Termination w.r.t. Q of the following Term Rewriting System could not be shown:
Q restricted rewrite system:
The TRS R consists of the following rules:
top1(sent1(x)) -> top1(check1(rest1(x)))
rest1(nil) -> sent1(nil)
rest1(cons2(x, y)) -> sent1(y)
check1(sent1(x)) -> sent1(check1(x))
check1(rest1(x)) -> rest1(check1(x))
check1(cons2(x, y)) -> cons2(check1(x), y)
check1(cons2(x, y)) -> cons2(x, check1(y))
check1(cons2(x, y)) -> cons2(x, y)
Q is empty.
↳ QTRS
↳ DependencyPairsProof
Q restricted rewrite system:
The TRS R consists of the following rules:
top1(sent1(x)) -> top1(check1(rest1(x)))
rest1(nil) -> sent1(nil)
rest1(cons2(x, y)) -> sent1(y)
check1(sent1(x)) -> sent1(check1(x))
check1(rest1(x)) -> rest1(check1(x))
check1(cons2(x, y)) -> cons2(check1(x), y)
check1(cons2(x, y)) -> cons2(x, check1(y))
check1(cons2(x, y)) -> cons2(x, y)
Q is empty.
Q DP problem:
The TRS P consists of the following rules:
CHECK1(cons2(x, y)) -> CHECK1(y)
TOP1(sent1(x)) -> REST1(x)
TOP1(sent1(x)) -> CHECK1(rest1(x))
TOP1(sent1(x)) -> TOP1(check1(rest1(x)))
CHECK1(rest1(x)) -> REST1(check1(x))
CHECK1(rest1(x)) -> CHECK1(x)
CHECK1(cons2(x, y)) -> CHECK1(x)
CHECK1(sent1(x)) -> CHECK1(x)
The TRS R consists of the following rules:
top1(sent1(x)) -> top1(check1(rest1(x)))
rest1(nil) -> sent1(nil)
rest1(cons2(x, y)) -> sent1(y)
check1(sent1(x)) -> sent1(check1(x))
check1(rest1(x)) -> rest1(check1(x))
check1(cons2(x, y)) -> cons2(check1(x), y)
check1(cons2(x, y)) -> cons2(x, check1(y))
check1(cons2(x, y)) -> cons2(x, y)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
Q DP problem:
The TRS P consists of the following rules:
CHECK1(cons2(x, y)) -> CHECK1(y)
TOP1(sent1(x)) -> REST1(x)
TOP1(sent1(x)) -> CHECK1(rest1(x))
TOP1(sent1(x)) -> TOP1(check1(rest1(x)))
CHECK1(rest1(x)) -> REST1(check1(x))
CHECK1(rest1(x)) -> CHECK1(x)
CHECK1(cons2(x, y)) -> CHECK1(x)
CHECK1(sent1(x)) -> CHECK1(x)
The TRS R consists of the following rules:
top1(sent1(x)) -> top1(check1(rest1(x)))
rest1(nil) -> sent1(nil)
rest1(cons2(x, y)) -> sent1(y)
check1(sent1(x)) -> sent1(check1(x))
check1(rest1(x)) -> rest1(check1(x))
check1(cons2(x, y)) -> cons2(check1(x), y)
check1(cons2(x, y)) -> cons2(x, check1(y))
check1(cons2(x, y)) -> cons2(x, y)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph contains 2 SCCs with 3 less nodes.
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
CHECK1(cons2(x, y)) -> CHECK1(y)
CHECK1(rest1(x)) -> CHECK1(x)
CHECK1(cons2(x, y)) -> CHECK1(x)
CHECK1(sent1(x)) -> CHECK1(x)
The TRS R consists of the following rules:
top1(sent1(x)) -> top1(check1(rest1(x)))
rest1(nil) -> sent1(nil)
rest1(cons2(x, y)) -> sent1(y)
check1(sent1(x)) -> sent1(check1(x))
check1(rest1(x)) -> rest1(check1(x))
check1(cons2(x, y)) -> cons2(check1(x), y)
check1(cons2(x, y)) -> cons2(x, check1(y))
check1(cons2(x, y)) -> cons2(x, y)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using an argument filtering and a montonic ordering, at least one Dependency Pair of this SCC can be strictly oriented.
CHECK1(cons2(x, y)) -> CHECK1(y)
CHECK1(cons2(x, y)) -> CHECK1(x)
Used argument filtering: CHECK1(x1) = x1
cons2(x1, x2) = cons2(x1, x2)
rest1(x1) = x1
sent1(x1) = x1
Used ordering: Quasi Precedence:
trivial
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
CHECK1(rest1(x)) -> CHECK1(x)
CHECK1(sent1(x)) -> CHECK1(x)
The TRS R consists of the following rules:
top1(sent1(x)) -> top1(check1(rest1(x)))
rest1(nil) -> sent1(nil)
rest1(cons2(x, y)) -> sent1(y)
check1(sent1(x)) -> sent1(check1(x))
check1(rest1(x)) -> rest1(check1(x))
check1(cons2(x, y)) -> cons2(check1(x), y)
check1(cons2(x, y)) -> cons2(x, check1(y))
check1(cons2(x, y)) -> cons2(x, y)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using an argument filtering and a montonic ordering, at least one Dependency Pair of this SCC can be strictly oriented.
CHECK1(sent1(x)) -> CHECK1(x)
Used argument filtering: CHECK1(x1) = x1
rest1(x1) = x1
sent1(x1) = sent1(x1)
Used ordering: Quasi Precedence:
trivial
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
CHECK1(rest1(x)) -> CHECK1(x)
The TRS R consists of the following rules:
top1(sent1(x)) -> top1(check1(rest1(x)))
rest1(nil) -> sent1(nil)
rest1(cons2(x, y)) -> sent1(y)
check1(sent1(x)) -> sent1(check1(x))
check1(rest1(x)) -> rest1(check1(x))
check1(cons2(x, y)) -> cons2(check1(x), y)
check1(cons2(x, y)) -> cons2(x, check1(y))
check1(cons2(x, y)) -> cons2(x, y)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using an argument filtering and a montonic ordering, at least one Dependency Pair of this SCC can be strictly oriented.
CHECK1(rest1(x)) -> CHECK1(x)
Used argument filtering: CHECK1(x1) = x1
rest1(x1) = rest1(x1)
Used ordering: Quasi Precedence:
trivial
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ PisEmptyProof
↳ QDP
Q DP problem:
P is empty.
The TRS R consists of the following rules:
top1(sent1(x)) -> top1(check1(rest1(x)))
rest1(nil) -> sent1(nil)
rest1(cons2(x, y)) -> sent1(y)
check1(sent1(x)) -> sent1(check1(x))
check1(rest1(x)) -> rest1(check1(x))
check1(cons2(x, y)) -> cons2(check1(x), y)
check1(cons2(x, y)) -> cons2(x, check1(y))
check1(cons2(x, y)) -> cons2(x, y)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
TOP1(sent1(x)) -> TOP1(check1(rest1(x)))
The TRS R consists of the following rules:
top1(sent1(x)) -> top1(check1(rest1(x)))
rest1(nil) -> sent1(nil)
rest1(cons2(x, y)) -> sent1(y)
check1(sent1(x)) -> sent1(check1(x))
check1(rest1(x)) -> rest1(check1(x))
check1(cons2(x, y)) -> cons2(check1(x), y)
check1(cons2(x, y)) -> cons2(x, check1(y))
check1(cons2(x, y)) -> cons2(x, y)
Q is empty.
We have to consider all minimal (P,Q,R)-chains.